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BACKGROUND: Aging is related to an increased risk of morbidity and mortality and is affected by environmental factors. Exposure to polycyclic aro-
matic hydrocarbons (PAHs) is associated with adverse health outcomes; but the association of such exposure with DNA methylation aging, a novel
aging marker, is unclear.

OBJECTIVES: Our aim was to investigate the association of PAH exposure with methylation aging.
METHODS:We trained and validated amethylation age predictor suitable for Chinese populations usingwhole bloodmethylation data in 989 Chinese and 160
Caucasians.We defined two aging indicators:Dage, asmethylation ageminus chronological age; and aging rate, the ratio ofmethylation to chronological age.
The association of PAH exposurewith aging indicatorswas evaluated using linear regressions in three panels of healthy Chinese participants (N=539, among
the aforementioned 989Chinese participants) whose exposure levelswere assessed by 10 urinarymonohydroxy-PAHmetabolites.
RESULTS: We developed a methylation age predictor providing accurate predictions in both Chinese individuals and Caucasian persons (R= 0:94–0:96,
RMSE=3:8–4:3). Among the 10 urinary metabolites that we measured, 1-hydroxypyrene and 9-hydroxyphenanthrene were associated with methylation
aging independently of other OH-PAHs and risk factors; 1-unit increase in 1-hydroxypyrene was associated with a 0.53-y increase in Dage [95% confi-
dence interval (CI): 0.18, 0.88; false discovery rate (FDR)FDR=0:004] and 1.17% increase in aging rate (95%CI: 0.36, 1.98;FDR=0:02), whereas for 9-
hydroxyphenanthrene, the increase was 0.54-y for Dage (95% CI: 0.17, 0.91; FDR=0:004), and 1.15% for aging rate (95% CI: 0.31, 1.99; FDR=0:02).
The association direction was consistent across the three Chinese panels with the association magnitude correlating with the panels’ exposure levels; the
association was validated by methylation data of purified leukocytes. Several cytosine-phosphoguanines, including those located on FHL2 and ELOVL2,
were found associated with both aging indicators andmonohydroxy-PAH levels.

CONCLUSIONS: We developed a methylation age predictor specific for Chinese populations but also accurate for Caucasian populations. Our findings
suggest that exposure to PAHs may be associated with an adverse impact on human aging and epigenetic alterations in Chinese populations. https://
doi.org/10.1289/EHP2773

Introduction
Aging is related to a progressive decline of physical, psychological,
and social functions and a great risk of many disabilities and dis-
eases. Human bodies age at different rates. Both genetic and

environmental factors are among the determinants of aging (de
Magalhães et al. 2012). In recent years, a growing body of evidence
suggested that the state of DNA methylation, an epigenetic modifi-
cation that plays crucial roles in gene regulation and genomic stabil-
ity (Jones 2012), was closely related to age over long time periods
(Christensen et al. 2009; Fraga and Esteller 2007; Hannum et al.
2013; Horvath 2013; Oberdoerffer and Sinclair 2007; Richardson
2003), and was associated with a range of age-related diseases,
including neurodegenerative diseases and cancers (De Jager et al.
2014; Esteller 2008). Using genome-wide technologies, pioneering
studies based on Caucasian/Hispanic populations found that DNA
methylation at certain age-related genes could capture aspects of bi-
ological age (i.e., the methylation age) (Hannum et al. 2013;
Horvath et al. 2012; Horvath 2013) and serve to detect human aging
status under different health conditions (Hannum et al. 2013;
Horvath 2013). Recent studies have reported significantmethylation
age accelerations in patients with cancers or Down syndrome
(Hannum et al. 2013; Horvath 2013; Horvath et al. 2015).
Methylation age of liver was associated with body-mass index
(BMI) (Horvath et al. 2014), and methylation age of whole blood
was associated with the performance of physical and cognitive fit-
ness and all-cause mortality in elderly populations (Marioni et al.
2015a, 2015b). These novel findings highlighted the importance of
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DNAmethylation in longevity and the potential usage of epigenetic
age in evaluation of the biological “clock.”

Because DNA methylation could be altered by genetic and
environmental factors and can integrate the impact of both factors
on a phenotype or disease (Schadt 2009), DNA methylation age
may likewise reflect the environmentally induced effects on aging.

Polycyclic aromatic hydrocarbons (PAHs) are a group of ubiq-
uitous pollutants that are generated during the incomplete combus-
tion or pyrolysis of organic matter (Samanta et al. 2002). PAH
exposure regularly occurs for humans – from ambient air (e.g., mu-
nicipal and industrial waste incineration, coal/wood/waste burn-
ing, or vehicle exhausts) and indoor air (e.g., smoking or cooking)
to foods and water (e.g., grills/barbecues or some crops, contami-
nated water) (WHO 2010). PAHs have various toxic effects on
multiple organs and have been related to the risk of cancers and car-
diovascular diseases (Burstyn et al. 2005; Kim et al. 2013). Prior
studies have observed associations between such exposure with
aging indicators such as telomere length (Pavanello et al. 2010)
and skin aging scores (Vierkötter et al. 2010), and with global or
gene-specific DNA methylation alterations (Herbstman et al.
2012; Tang et al. 2012). However, the relation between PAH expo-
sure andDNAmethylation aging is still unclear.

In the present study, we hypothesized that exposure to higher
levels of PAHs may be associated with increased age accelera-
tions. We first built a methylation age predictor that performed
accurately for Chinese populations using genome-wide methyl-
ome data and defined two indicators of methylation aging: Dage
(suggesting the extra years a person aged) and aging rate (sug-
gesting the speed of the aging process). Then, using 10 urinary
monohydroxy-PAH (OH-PAH) metabolites as internal exposure
biomarkers accessing total PAH exposure from all sources, we
quantitatively assessed the association between exposure to
PAHs and DNA methylation aging (Figure S1).

Methods

Study Population
Our study was primarily conducted in three panels of Chinese
populations with a total of 539 healthy participants. Detailed in-
formation of these participants has been described in a previous
study (Zhu et al. 2016) and is briefly mentioned below.

The coke-oven workers (COW) panel. A Coke Oven Cohort
was established in 2010 in a coke-oven plant in Wuhan, China (Li
et al. 2012). A total of 1,628 coke-oven workers who have worked
in this plant at the top, side, bottom, or adjunct of coke ovens, or in
the management offices for more than 1 y, and who signed the par-
ticipation agreement, were enrolled at study baseline. We randomly
selected 144 workers for the genotyping and methylation assays
among those participants who met the following criteria: (1)
donated both blood and urine samples at baseline; (2) had a BMI
between 18.0 and 30.5; (3) worked in the same plant for >5 y; (4)
did not report any disease at baseline; (5) did not report having fever
or infectious disease in the 2 weeks before the time of blood collec-
tion, and did not take any medication in the 4 weeks before the time
of blood collection; and (6) had baseline total urinary OH-PAH
(ROH-PAH) levels in the highest tertile. After the quality controls
(QC) of methylation and genotyping data, 137 workers who passed
QCwere included in the final analyses.

The Wuhan–Zhuhai (WHZH) panel. Established in 2011,
the WHZH cohort recruited 3,053 residents from two urban com-
munities in Wuhan, China, and 1,759 residents from two urban
communities in Zhuhai, China (Song et al. 2014). The four com-
munities were sampled using a stratified, cluster sampling
approach; all residents age 18–80 y and without severe illnesses
had lived in the same communities for more than 5 y and agreed

to participate were enrolled (Song et al. 2014). Among the cohort
participants who (1) donated both blood and urine samples at
baseline; (2) neither reported any disease at baseline interview,
nor showed any abnormalities (not including limb/visual/hearing
disability due to previous work injuries) at baseline examinations;
(3) did not report having fever or infectious disease in 2 weeks
before the time of blood collection, and did not take any medica-
tion in 4 weeks before the time of blood collection, 180 Wuhan
residents were selected as matched controls for a case–control
study of cardiovascular disease (n=103, matching with the cases
by age, sex, and BMI) (Li et al. 2017) and/or matched controls
for the aforementioned COWs (selected from individuals whose
urinary ROH-PAH in the lowest tertile, and matching with the
COWs by age, sex, and BMI; n=144; the cardiovascular study
and COW study shared 64 controls) (Zhu et al. 2016). Another
103 Zhuhai residents were also selected as matched controls for
the aforementioned cardiovascular case–control study, matching
with the cases by age, sex, and BMI (Li et al. 2017). Among the
selected 180 Wuhan residents and 103 Zhuhai residents, 162
Wuhan and 99 Zhuhai samples passed QC for both genotyping
and methylation assays and were initially included in our methyl-
ation age prediction. Three Wuhan residents were later found to
be extreme outliers of Dage and aging rate and were excluded
from the study (Figure S2), leaving 258 subjects remaining in
final analyses.

The Shiyan (SY) panel. To investigate the effects of genetic,
epigenetic, and environmental factors on gene expression, we
recruited 144 individuals who participated in the annual physical
examinations at theHealth ExaminationCenter of DongfengCentral
Hospital (Dongfeng Motor Corporation and Hubei University of
Medicine) in Shiyan, Hubei, China, from April to May 2015.
Subjects were enrolled if they (1) aged 20–70 y; (2) agreed to par-
ticipate; (3) donated both blood and urine samples; (4) reported
no chronic diseases, and (5) reported no fever/infectious diseases
in 2 weeks before the time of blood collection and no medication
prescribed in 4 weeks before the time of blood collection. We
applied the genome-wide genotyping, methylation, and expres-
sion assays on the 144 participants; all subjects passed QC of
these data and were included in the final analyses.

In addition, participants in the above three panels were asked to
eat a bland diet and then fast for at least 12 h before sample collection.
All biological samples were collected, processed, and stored follow-
ing the same protocols under similar conditions in the same lab.

The methylation dataset with sorted leukocyte subsets. We
enrolled eight healthymenwho attended the annualmedical examina-
tions at Tongji Medical College (Wuhan, China) in February 2015,
aiming to assess the cellular heterogeneity of DNA methylation in
purified leukocyte subsets. The recruitment criteria were the same as
the SY panel, with an addition of willingness to donate ≥16mL
blood. Protocols have been described previously (Li et al. 2017).

External validation sets for the age prediction model. To seek
a separated validation of our age prediction model, we acquired
two additional methylation datasets, the Twins Methylation Study
(TwinS) with 450 Chinese adults (i.e., 225 pairs of twins) from The
Chinese National Twin Registry (Wang et al. 2015), and an asth-
matic family panel from the Saguenay-Lac-Saint-Jean region in
Québec (SLSJ) with 160 Canadian children and adults (Liang et al.
2015). Detailed information has been described in prior publications
(Laprise 2014; Liang et al. 2015; Wang et al. 2015).

Our study was approved by the Institutional Review Boards
(respectively the Ethics Committee of Tongji Medical College,
the Biomedical Ethics Committee of Peking University, and the
Ethics Committee of the Centre de santé et de services sociaux de
Saguenay). Informed written consent was obtained from each
participant prior to the study.
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Laboratory Assays
Genome-wide DNA methylation and gene expression assays.
Genome-wide methylation assays for the WHZH, SY, COW, and
TwinS panels were conducted in the same lab and has been
described previously (Li et al. 2017; Wang et al. 2015; Zhu et al.
2016). Briefly, DNA was extracted from whole blood using
standard procedures. Bisulfite conversion was performed using
Zymo EZ DNA Methylation kit (Zymo Research). In each origi-
nal study, we randomized all samples/pairs/blocks (case–control
pairs, different samples from the same subjects) across plates and
beadchips. DNA methylation levels at >485,000 cytosine-
phosphoguanine (CpG) sites were quantified using Infinium
HumanMethylation450 BeadChip (Illumina) as per instructions
from Illumina. IDAT files generated from iScan (Illumina) sys-
tem were processed in to R using the minfi package (Aryee et al.
2014). CpG probes were excluded if they: (1) assay single nucle-
otide polymorphisms (SNPs) rather than CpGs; (2) had a missing
rate >20% (for a probe of a certain sample, missing was defined
when detection P>0:01 or bead counts <3); or (3) potentially
contained or extended on SNPs with minor allele frequency
(MAF) >0:05 in the 1000 Genomes Project 20110521 release for
ASN population, or possibly cross-hybridized to other genomic
locations (41,296 probes). Samples were removed if they: (1) were
outliers from test of Multidimensional Scaling; (2) were mixed-up
samples; (3) had a missing rate >5% across probes; or (4) failed
quality controls of genome-wide genotyping data, including sex
discrepancies (based on sex chromosomes), heterozygosity out-
liers (felt out of range of mean± 6×SD), unexpected duplicates
or relatives (PI HAT>0:185 in identity by descent analysis),
and individual genetic call rate <0:98. After QC, raw methyla-
tion data from all three panels were normalized together using
the dasen method in the wateRmelon package (Pidsley et al.
2013).

In the SLSJ, genome-wide methylation of leukocyte nuclear
pellets DNA was assayed using Infinium HumanMethylation450
BeadChip (Illumina), with the details described previously (Liang
et al. 2015). Genome-wide methylation data were then processed
using the Touleimat and Tost analysis pipeline (Touleimat and
Tost 2012). Samples were removed if they had a missing rate
>20% across probes; probes were removed if they: (1) assay SNPs
rather than CpGs; and (2) overlapped with any SNPs with MAF
>0:05 (in 1,000 Genomes Project phase 1 EUR population) in the
probe sequence or in position + 1 or + 2 of the query site. The
lumi package was used for background and color bias correction
(Du et al. 2008). BeadChip ID numbers and position on chip were
included as categorical covariates to account for potential batch
effects. Quantile normalization across samples was applied to
probes within each functional category (CpG island, shelf, shore,
etc.) separately to correct the shift of methylation b values between
Infinium I and Infinium II probes.

Genome-wide expression assay for the SY panel has been
described previously (Li et al. 2017). Briefly, total RNA of SY
was extracted from blood leukocytes within 2 h after blood draw
using the TRIzol® LS Reagent (Life Technologies) according to
standard protocols. Expressions profiles were measured using
HumanHT-12 version 4 Expression BeadChip (Illumina) per
instructions from Illumina. IDAT files generated from iScan
(Illumina) system were processed using GenomeStudio GE mod-
ule version 1.9.0 and quantile–quantile normalized using beadar-
ray (Dunning et al. 2007) package.

Leukocyte subsets separation and purification. Leukocyte
subsets separation and purification were performed on blood sam-
ples of the eight healthy men recruited from Wuhan, China. The
detailed laboratory procedures have been reported in our previous
study (Li et al. 2017). Briefly, for each subject, a total of 16 mL

blood was collected; 2 mL was used for cell counting (Roche
Cobas 8000; BD FACSCanto II Flow Cytometer) and the remain-
ing 14 mL was processed to cell separation immediately. We first
separated peripheral blood mononuclear cells (PBMCs) and gran-
ulocytes by density centrifuge using Ficoll-Paque Plus™ (GE
Healthcare). Monocytes, and CD4+T, CD8+T, B, and Natural
Killer (NK) cells were then separated and purified from washed
PBMCs using paramagnetic microbeads coupled with anti-CD14,
anti-CD4, anti-CD8, anti-CD19, or anti-CD56 antibodies
(Miltenyi Biotec), and a MidiMACS™ separator (Miltenyi
Biotec) following standard protocols of magnetic-activated cell
sorting (MACS). Granulocytes were collected by density gradient
from cell pellet, washed, and resuspended. Neutrophils were sep-
arated and purified from granulocytes by paramagnetic microbe-
ads with anti-CD16 antibodies and a MidiMACS™ separator
following MACS protocols. A duplicate of 1 × 105 cells of each
purified cell subtype was used for purity validation on a BD™
LSR II flow cytometer (BD Biosciences). DNA of purified leuko-
cyte subsets were isolated and stored at −80�C until Beadchip
assay.

Urinary creatinine and OH-PAH metabolites. Baseline uri-
nary levels of creatinine and 12 OH-PAH metabolites in the
coke oven cohort and the WHZH-cohort have been reported in
detail in our previous studies (Deng et al. 2014; Kuang et al.
2013; Li et al. 2012; Zhou et al. 2016). The same methods were
applied to the SY panel and the eight men from cell-sorting to
measure the same urinary biomarkers. Though measured sepa-
rately, OH-PAH metabolites in each study cohort/panel were
quantified using the same protocol and platform, and thus the
limits of quantification (LOQ) were the same across panels,
ranging from 0:1 to 1:4 lg=L (Table S1). Of the 12 metabolites,
10 noncarcinogenic markers, namely 1-OH-naphthalene, 2-OH-
naphthalene, 2-OH-fluorene, 9-OH-fluorene, 1-OH-phenanthrene,
2-OH-phenanthrene, 3-OH-phenanthrene, 4-OH-phenanthrene, 9-
OH-phenanthrene, and 1-OH-pyrene, were mostly detectable thus
included in the analyses (Table S1). Measurements below the
LOQ is imputed using 50% of the LOQ. The other 2 carcinogenic
markers, namely 6-OH-chrysene and 3-OH-benzo[a]pyrene, were
all below the LOQ and futile for the study (Kuang et al. 2013; Li
et al. 2012; Zhou et al. 2016). The molar concentrations of OH-
PAHs were then calibrated by urinary creatinine and presented
as micromoles per millimole creatinine. ROH-PAHs were the sum
of the 10 detectable OH-PAH metabolites, after half-LOQ-
imputation and creatinine-recalibration.

Data Collection and Definition of Covariates
Baseline data of the COW, WHZH, and SY panels, including de-
mographic data, lifestyle and occupation information, and disease
histories were collected from standard questionnaires. Clinical
tests results, including proportions of neutrophil, lymphocyte, and
intermediate cells (sum of monocyte, eosinophils and basophils) in
whole blood for the same tubes of blood samples used for methyla-
tion/expression assays were acquired from clinical recodes. BMI
was calculated as the body mass divided by the square of body
height and was expressed in unit of kg=m2. Current smokers were
defined as individuals who smoked >1 cigarettes/day over the
past 6 mo; ex-smokers were those who quitted smoking for more
than 6 mo; and never-smokers were subjects who never smoked.
Cigarette pack-years was calculated by multiplying the number of
packs of cigarettes smoked per day by the number of years the per-
son had smoked. Current alcohol drinkers were defined as individ-
uals who drank >1 time=wk over the past 6 mo; ex-drinkers were
those who quit drinking for more than 6 mo; and never-drinkers
were those who never drank any liquor. Marriage status referred to
whether the subjects were single, married, separated, divorced, or
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widowed. Education level indicated if a participant had a college
education or not. In our cohorts, employment status defined
whether the participants were employed, unemployed, retired,
or off duty due to work injuries. Frequency of vegetables and fruits
consumption ranged from <4, 4–12, 12–20, and 20–30 d (that the
person had eaten vegetables or fruits) permonth. Subjects regularly
exercised >20minutes for >3 times per week were defined as physi-
cally active, and otherwise as inactive. Covariates were missing for a
small number of samples; in order not to lose statistical power for the
missing covariates in association analyses,mean (for continuous vari-
ables normally distributed), median (for continuous variables not nor-
mally distributed), or mode (for categorical variables) were used to
impute themissing covariates.

Statistical Analyses
Methylation age prediction. We used the WHZH panel as the
training set and used the COW and SY panel as the primary testing
datasets. The WHZH panel was chosen as the training set because
(1) the WHZH participants had a larger sample size and a wider
range and standard deviation (SD) of age in comparison with
the other primary panels (N =258, age range= 25:6–90:0 y, and
SD=12:9 in the WHZH; N =144, age range= 22:0–71:0 y,
and SD=10:3 in the SY; and N =137, age range= 26:2–60:2 y,
and SD=8:9 in the COW panel); these parameters were major
determinants of the prediction accuracy (Horvath 2013); and (2)
participants in the WHZH panel were sampled from general urban
communities, whereas the other two panels were sampled either
from a coke-oven plant (i.e., COW) or from a community within an
automobile company (i.e., SY); therefore, individuals in the
WHZHpanel weremore representative of the general populations.

To build the age predictor in WHZH, we applied elastic net, a
penalized regression model, (Friedman et al. 2010) to regress the
chronological age on 420,771 quality-controlled autosome CpGs to-
getherwith gender, smoking, drinking,BMI, and cellular proportions.
The lambda value of the elastic net model was chosen using a 10-fold
cross-validation approach. We then applied this age predictor to the
testing datasets SY andCOW to acquire the predicted age (themeth-
ylation age) in these two panels. Themethylation agewas computed
as the weighted sum of selected CpGs with weights equal to the
regression coefficients from the prediction model, plus a model
intercept. The selectedCpGs and coefficients captured the variations
of methylation age, whereas the model intercept may capture spe-
cific batch effects and population features. Therefore, after applying
the age predictor to the testing datasets, we fitted a linear regression
of methylation age= chrono log ical age+ population intercept in
the WHZH, COW, and SY panels, separately; we then recalibrated
the model intercept of SY and COW to make the population inter-
cept of SY and COW the same as the population intercept of
WHZH (referred to as intercept equalization in the following text).
The coefficients of CpGs were unchanged when applying the age
predictor. Through this method, we equalized the systematic shifts
of methylation values and thus increased the comparability across
panels. A similar recalibration method was used in prior studies
(Hannumet al. 2013).

As for the training set (the WHZH panel), we used the leave-
one-out cross-validation (LOOCV) approach to obtain an unbiased
methylation age. In each run, the elastic net regression was applied
to all but one sample (the training set), and the model obtained was
applied to the left-out sample (the testing set). A similar method
was used in a previous study to acquire unbiased methylation age
suitable for subsequent analyses (Horvath 2013).

Pearson’s correlation coefficient (R) and root-mean-square
errors (RMSE) between the chronological age and methylation
age were calculated to evaluate the prediction accuracy.

When applying the age predictor to the methylation dataset of
eight healthy men from leukocytes subsets cell-sorting, intercept
calibration was not performed due to limited sample size and cel-
lular heterogeneity.

Validation of the age prediction model using external data-
sets. To seek for an additional validation of the prediction accu-
racy, we applied our age predictor to 2 external datasets – TwinS
and SLSJ. Because methylation of the TwinS was assayed in the
same lab at the same time with our training set, we recalibrated
the intercept using the aforementioned intercept equalization
method. For the SLSJ, the methylation data was assayed in a dif-
ferent lab, and 5 CpGs in our age predictor were unavailable due
to failure in QC; therefore, to minimize the shift, we recalibrated
the model intercept to achieve the least RMSE between methyla-
tion and chronological age. The model coefficients of CpGs were
unchanged during the intercept recalibration, and thus the corre-
lation between methylation and chronological age was unaf-
fected. We compared prediction parameters (R and RMSE) in the
validation panels with those in the primary panels to evaluate the
model accuracy.

In addition, we calculated the methylation age using the
existing Horvath predictor (Horvath 2013) in our resident pan-
els (i.e., WHZH+SY, unexposed to coke-oven emissions),
TwinS, and SLSJ. The model intercept of the WHZH, SY, and
TwinS were recalibrated using the intercept equalization
method and in SLSJ, using the least RMSE method. We com-
pared R and RMSE of our predictor with the Horvath predictor
within the same panels.

Association of PAH exposure and methylation aging. The
association analyses were conducted in our three primary panels,
in which urinary OH-PAH measurements were available (Figure
S1). Dage was calculated as the chronological age minus methyl-
ation age; aging rate was the ratio of chronological age to methyl-
ation age; both indicators were normally distributed. OH-PAH
metabolites were natural-log-transformed; subjects without suffi-
cient urine samples or with measurements outliers (>mean±3 SD)
in each panel were excluded before analyses (Table S1).

To evaluate the associations of each OH-PAH metabolite with
aging, we fitted multivariate linear regressions with Dage (or aging
rate) as the dependent variable and each OH-PAH metabolite (con-
tinuous variable) as the indicator. Covariates that were adjusted for
in the regression included age, gender, BMI, smoking status, ciga-
rette pack-years, alcohol drinking, geographical regions, and micro-
array operation date (Model 1). We further adjusted for cellular
proportions (including neutrophil, lymphocyte and intermediate
cells; Model 2) and marriage status, education, employment status,
frequency of vegetables and fruits intake, and physical activity to
account for other confounding (Model 3). The association analyses
were conducted in the WHZH, SY, and COW separately and com-
bined using a fixed-effect meta-analysis to obtain robust association
estimations. Associations of metabolites with aging indicators were
considered significant if false discovery rate (FDR) <0:05.

Correlations between OH-PAHs were tested using Pearson’s
correlation coefficients on a nature-log transformed scale. To iden-
tify the OH-PAH metabolites independently associated with age
acceleration, we fitted a stepwise regression, in which all covari-
ates were forced in, whereas the significant OH-PAH metabolites
(those with FDR<0:05 in individual metabolites analysis) were
first included and then backward selected (significance level to
stay= 0:1).

In a secondary analysis, we pooled WHZH, SY, and COW to-
gether to obtain the quartile cut-off points of the 9-OH-phenan-
threne and 1-OH-pyrene and categorized the participants from all
three panels into quartiles using the same cut-offs. We then com-
pared the age acceleration of higher quartiles with the lowest
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quartile using the maximally adjusted model (plus adjusting for the
study panels) by linear regressions, using the pooled dataset of the
three panels (to increase sample size in each quartile). To quantify
a linear trend, we assigned the median value of metabolites within
each quartile andmodeled this variable continuously.

In another secondary analysis, to test whether our significant
findings of whole blood methylation can be replicated by cell-
specific methylation, we examined the relation between 9-OH-
phenanthrene or 1-OH-pyrene exposure and age acceleration in
each leukocyte subtype in eight healthy men. Due to the limited
sample size and the non-normal distribution of both aging indica-
tors and OH-PAHs, we categorized the eight participants into
high- vs. low-exposure groups according to the inflection point
on the curve of the metabolite’s level and compared the methyla-
tion age acceleration in high- vs. low-exposure groups using the
Mann-Whitney U-test. Box plots were used to visualize the data;
no covariates were adjusted for.

Association of CpGs with aging indicators and OH-PAH
metabolites. To eliminate outliers and archive a normal distribu-
tion for linear regression, methylation values of the 239 CpGs
were inverse-normal transformed (to a normal distribution with a
mean value of 0 and a SD of 1) before this analysis. The associa-
tion of each CpG with methylation aging (Dage or aging rate)
was evaluated using linear regressions, adjusted for age, gender,
BMI, smoking status, cigarette pack-years, alcohol drinking, geo-
graphical regions, microarray operation date, and cellular propor-
tions; a P<2:09× 10−4 (Bonferroni corrected for 239 CpGs) was
considered as statistically significant. We then assessed the asso-
ciation of 1-OH-pyrene or 9-OH-phenanthrene with aging-related
CpGs using linear regression, adjusting for the aforementioned
covariates, with a P<0:05 considered as statistically significant.
All analysis was conducted separately in the WHZH, SY, and
COW, and combined using a meta-analysis. For the CpGs of in-
terest, the association of methylation levels with the expression
of corresponding genes were evaluated in the SY panel using lin-
ear regressions with adjustment for age and gender. All analyses
were performed using R (version 3.1.2; R Core Team).

Results

Characteristics of the Study Participants
In terms of our primary study panels, the WHZH included 258
healthy community residents age 26–89 y (mean age 53.8 y; 79.5%
men); the SY included 144 healthy residents age 22–71 y (mean age
41.3 y; 74.3% men); and the COW included 137 healthy coke-oven
workers age 26–60 y (mean age 46.5 y; 78.1% men) (Table 1).
Individuals in the COWpanel had the highest OH-PAHs levels (me-
dian ROH-PAHs 13:31 lmol=mmol creatinine), followed by those
in the WHZH panel (median ROH-PAHs 2:44 lmol=mmol creati-
nine), whereas participants in the SY panel had the lowest OH-
PAHs levels (median ROH-PAHs 1:13 lmol=mmol creatinine)
(Table 2).

Table 2. Creatinine-calibrated concentrations of urinary OH-PAH metabolites (lmol=mmol creatinine) in each study panel.

OH-PAH metabolites
WHZH SY COW

na Median (25th, 75th) na Median (25th, 75th) na Median (25th, 75th)

1-OH-Naphthalene (× 10−2) 232 0.31 (0.22, 0.5) 139 0.04 (0.02, 0.11) 137 2.45 (1.73, 4.23)
2-OH-Naphthalene ( × 10−2) 232 0.56 (0.40, 0.93) 136 0.12 (0.04, 0.42) 136 2.28 (1.48, 3.54)
2-OH-Fluorene (× 10−3) 231 1.20 (0.85, 1.63) 139 0.12 (0.04, 0.63) 136 9.25 (6.48, 15.44)
9-OH-Fluorene (× 10−3) 234 2.98 (1.95, 5.10) 140 0.88 (0.17, 3.34) 134 6.28 (3.78, 13.01)
1-OH-Phenanthrene (× 10−3) 234 0.87 (0.66, 1.38) 140 0.11 (0.06, 0.25) 137 7.99 (5.55, 13.57)
2-OH-Phenanthrene (× 10−3) 230 0.62 (0.44, 0.91) 139 0.36 (0.14, 0.83) 136 3.37 (2.17, 5.50)
3-OH-Phenanthrene (× 10−3) 230 1.11 (0.75, 1.44) 138 0.07 (0.04, 0.18) 137 3.83 (1.60, 6.23)
4-OH-Phenanthrene (× 10−3) 230 1.07 (0.80, 1.53) 138 0.86 (0.36, 1.67) 136 2.89 (1.47, 6.14)
9-OH-Phenanthrene (× 10−3) 232 2.26 (1.60, 3.22) 139 0.73 (0.31, 1.33) 133 8.18 (4.79, 14.13)
1-OH-Pyrene (× 10−2) 231 0.26 (0.17, 0.37) 140 0.16 (0.04, 0.34) 137 3.30 (2.53, 4.96)
Total OH-PAHs (× 10−2) 233 2.44 (1.88, 3.12) 136 1.13 (0.65, 1.79) 137 13.31 (10.5, 18.86)

Note: WHZH, study subjects selected from the WHZH-cohort; SY, participants recruited from Shiyan, China; COW, study subjects selected from the cohort of coke oven workers.
aSummary data were calculated among subjects with sufficient and qualified urine samples, after half-LOQ imputation and outlier (mean± 3×SD at the ln-transformed scale)
removal.

Table 1. Characteristics of the study population.

Variables
WHZH
(n=258)

SY
(n=144)

COW
(n=137)

Age variables
Age, years 53.8 (12.9) 41.3 (10.3) 46.5 (8.9)
Methylation age, years 53.9 (11.8) 43.8 (9.7) 50.2 (9.0)
DAge, years 0.09 (4.05) 2.45 (3.50) 3.55 (4.00)
Aging rate 1.01 (0.08) 1.07 (0.09) 1.08 (0.09)
Characteristics
Men 205 (79.5%) 107 (74.3%) 107 (78.1%)
Smoking status
Current-smokers 108 (41.9%) 45 (31.2%) 84 (61.3%)
Ex-smokers 25 (9.7%) 2 (1.4%) 3 (2.2%)
Never-smokers 125 (48.4%) 97 (67.4%) 50 (36.5%)
Cigarette pack-yearsa 18 (8, 29) 20 (5, 31) 21 (14, 35)
Alcohol drinking status
Current-drinkers 81 (31.4%) 55 (38.2%) 49 (35.8%)
Ex-drinkers 5 (1.9%) 1 (0.7%) 4 (2.9%)
Never drinkers 172 (66.7%) 88 (61.1%) 84 (61.3%)
Employment status
Employed 137 (53.1%) 140 (97.2%) 137 (100%)
Unemployed at working age 41 (15.9%) 0 0
Retired 72 (27.9%) 4 (2.8%) 0
Physically disabled by work
injuries

8 (3.1%) 0 0

Marriage status
Single 3 (1.2%) 19 (13.2%) 4 (2.9%)
Married 241 (93.4%) 125 (86.8%) 132 (96.4%)
Divorced or widowed 14 (5.4%) 0 1 (0.7%)
Education level
High school or lower 219 (84.9%) 94 (65.3%) 89 (65.0%)
Bachelor or above 39 (15.1%) 50 (34.7%) 48 (35.0%)
Physical activity
Physically active 128 (49.6%) 79 (54.9%) 74 (54.0%)
Physically inactive 130 (50.4%) 65 (45.1%) 63 (46.0%)
BMI, kg=m2 23.4 (2.8) 24.2 (2.7) 23.5 (2.7)
White blood cell counts,
1 × 109=L

6.0 (1.6) 6.0 (1.4) 6.7 (1.5)

Neutrophils proportion (%) 55.8 (8.3) 58.0 (8.2) 59.6 (7.3)
Lymphocytes proportion (%) 37.4 (8.2) 33.7 (7.5) 36.8 (7.1)
Intermediate cells proportion (%) 6.9 (3.8) 8.4 (2.7) 3.6 (1.2)

Note: Continuous variables were presented as mean (SD) or median (25th percentile,
75th percentile). Categorical variables were presented as n (%). Data were complete for
each variable after processing as described in the Methods. Intermediate cell was the
sum of monocytes, eosinophils and basophils. WHZH, study subjects selected from the
WHZH-cohort; SY, participants recruited from Shiyan, China; COW, study subjects
selected from the cohort of coke-oven workers.
aAmong ever smokers.
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With respect to the two validation panels for the age predictor,
the TwinS contained 450 Chinese individuals age 18–81 y (mean
age 44.8 y; 65.6% men), and the SLSJ contained 160 Caucasians
age 5–79 y (mean age 29.0 y; 20%men).

AMethylation Age Predictor with Improved Accuracy in
Chinese Populations
Based on an elastic net regression in theWHZH panel (the training
dataset), a total of 239 quality-controlled autosome CpGs were
selected into the age predictor (Figure 1 and Table S2), which
achieved a high accuracy of age prediction in the SY and COW
panel (the testing datasets). The correlation between chronological
age and methylation age in SY and COW was 0.94 and 0.90,
respectively, and the RMSE was 4.26 and 5.34, respectively
(Figure 1). The unbiased methylation age acquired using LOOCV
in the WHZH panel showed a similar prediction accuracy with a
correlation coefficient of 0.95 and a RMSE of 4.05 (Figure 1).

The high accuracy of our age predictor was further validated in
an external Chinese population (in TwinS: R= 0:96, RMSE=3:79)
and a Caucasian population (in SLSJ: R= 0:96, RMSE=4:14);

both R and RMSE were similar with those in our primary panels
(Figure 1).

When applying the existing Horvath predictor to the WHZH+
SY, TwinS, and SLSJ panels, the correlation between chronological
age andmethylation agewas 0.83, 0.92, and 0.96, respectively, with
an RMSE of 7.48, 9.85, and 6.46.When fitting a linear regression of
the chronological age against methylation age, a shift in the slope
was also observed with the Horvath model (Figure S3). In compari-
son with the Horvath predictor, our age predictor showed a higher
accuracy and less error in Chinese populations and a similar accu-
racy inCaucasian populations.

Exposure to PAHs and Accelerated Methylation Aging
The mean values of Dage in our primary study panels WHZH,
SY, and COW were 0.09, 2.45, and 3.55 y, respectively, and the
mean aging rate was 1.01, 1.07, and 1.08, respectively (Table 1).
As expected, the COW showed an increased Dage and aging rate
(P<0:001). We then assessed whether exposure to PAHs was
associated with accelerated methylation aging.

After adjusting for multiple risk factors, total urinaryROH-PAHs
level was positively associated with both Dage and aging rate; the
association was slightly strengthened when further adjusting for

Figure 1.Methylation age prediction. (A): the procedures of methylation age prediction; (B), (C), and (D) present orderly the correlation and RMSE between
methylation age and chronological age in our primary study panels – WHZH, SY, and COW; (E) and (F) present orderly the correlation and RMSE in the
external validation populations – TwinS and SLSJ. Note: WHZH, study subjects selected from the WHZH-cohort; SY, participants recruited from Shiyan,
China; COW, study subjects selected from the cohort of coke oven workers; TwinS, the Twins Methylation Studies; and SLSJ, the asthmatic family panel
from the Saguenay-Lac-Saint-Jean region in Québec. RMSE, the root-mean-square error.
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leukocytes types and socioeconomic factors, with 1 unit (nature-log
transformed scale) increment in ROH-PAHs associated with a 1.0-y
increase inDage (95%CI: 0.4, 1.6; P=0:002) and a 1.9% increase in
aging rate (95% CI: 0.6, 3.3; P=0:008) (Table 3). When analyzing
each OH-PAH metabolite individually, urinary 2-OH-phenanthrene,
3-OH-phenanthrene, 9-OH-phenanthrene and 1-OH-pyrene were
positively associated with Dage, whereas 9-OH-phenanthrene and 1-
OH-pyrene were positively associated with aging rate (FDR<0:05)
in the maximally adjusted model (Table 3 Model 3). For these
significant OH-PAH metabolites, the association direction was
generally consistent across the three Chinese panels, with COW
having the highest metabolites levels and showing the largest age
acceleration (per metabolite increment), and SY having the low-
est metabolites levels and showing the smallest age acceleration
(Figure 2); this result suggested a potential dose–response rela-
tionship between PAH exposure and methylation aging at the
population level.

The 10 OH-PAH metabolites were correlated with each other
(Figure S4). Using a stepwise regression, we found that 9-OH-
phenanthrene and 1-OH-pyrene were significantly associated
with both Dage and aging rate independently of other OH-PAHs,
risk factors, leukocyte types, as well as socioeconomic factors
(Table S3). Each unit increment in the ln-transformed 9-OH-
phenanthrene (corresponded to 1.32, 1.74, and 0.76-SD in the
COW, WHZH, and SY panels) were associated with an 0.54-y
increase in Dage (95% CI: 0.17, 0.91; FDR=0:004) and 1.15%
increase in aging rate (95% CI: 0.31, 1.99; FDR=0:02); whereas
the numbers for 1-unit increment of 1-OH-pyrene (corresponded
to 1.66, 1.65, and 0.69-SD in the COW, WHZH, and SY panels)
were 0.53-y for Dage (95% CI: 0.18, 0.88; FDR=0:004) and
1.17% for aging rate (95% CI: 0.36, 1.98; FDR=0:02) (Table 3
and Figure S5). In the pooled analysis of the three panels, the age
acceleration gradually increased with the increasing quartiles of
the 2 metabolites (Table S4), suggesting a linear relationship
between PAH exposure and methylation aging.

Replication of the PAH-aging Association Using Cell
Subtype Specific Methylation
When replicating the association of 9-OH-phenanthrene and 1-
OH-pyrene with methylation aging using cell-specific methylation
(i.e., neutrophils, monocytes, CD8+T, CD4+T, B and NK cells)
in the eight healthymen (Table S5), we observed a notable trend: A
higher level of 9-OH-phenanthrene was related to a higher methyl-
ation age. especially in CD8+T, CD4+T and NK cells, whereas a
higher level of 1-OH-pyrene was related to a higher methylation
age in CD8+ andCD4+T cells (Figure S6).

CpGs Associated with Age Acceleration and PAH Exposure
We examined the association of the 239 CpGs in our age pre-
dictor with aging indicators and OH-PAH metabolites. Among
the CpGs significantly associated with Dage and aging rate
(Bonferroni corrected P<0:05), we identified 3 CpGs associ-
ated with urinary 1-OH-pyrene levels (located on FHL2 and
BOK; P<0:05), and 6 CpGs associated with 9-OH-phenan-
threne levels (located on ELOVL2, TRIM59, ACSS3, RNF170,
and 3q25.31; P<0:05) (Table S6).

Of these aging-, PAH-related CpGs, methylation level at
cg22454769 was positively correlated with the expression of
FHL2 (P=0:01). In comparison with individuals who did not
express ELOVL2 in blood leukocytes, individuals who expressed
the gene had a lower cg24724428 methylation level (P=0:002,
N =32); and among these subjects, methylation of cg24724428
was inversely correlated with the ELOVL2 expression (P=0:02)
(Figure S7).

Association of Other Risk Factors with DNA
Methylation Aging
In our study populations, BMI showed a mild U-shape relation
with methylation aging, and individuals with limb/visual/hearing

Table 3. Estimated mean difference in methylation aging indicators (Dage in years, and aging rate %) in association with a 1-unit increment in ln-transformed
urinary OH-PAH metabolite concentrations.

OH-PAH metabolites
Model 1 Model 2 Model 3

Beta (95% CI) FDR Beta (95% CI) FDR Beta (95% CI) FDR

Association with Dage
1-OH-Naphthalene 0.37 (−0:02, 0.75) 0.07 0.41 (0.01, 0.80) 0.06 0.37 (−0:02, 0.77) 0.08
2-OH-Naphthalene 0.29 (−0:12, 0.69) 0.06 0.28 (−0:13, 0.70) 0.06 0.24 (−0:17, 0.65) 0.08
2-OH-Fluorene 0.38 (0.05, 0.71) 0.06 0.39 (0.06, 0.73) 0.06 0.40 (0.07, 0.73) 0.05
9-OH-Fluorene 0.21 (−0:03, 0.46) 0.08 0.21 (−0:04, 0.46) 0.09 0.24 (−0:01, 0.49) 0.08
1-OH-Phenanthrene −0:08 (−0:48, 0.32) 0.94 −0:07 (−0:47, 0.34) 0.98 0.00 (−0:41, 0.41) 0.76
2-OH-Phenanthrene 0.35 (0.01, 0.70) 0.05 0.38 (0.03, 0.74) 0.04 0.43 (0.08, 0.79) 0.04
3-OH-Phenanthrene 0.44 (0.07, 0.81) 0.03 0.47 (0.09, 0.85) 0.03 0.48 (0.10, 0.86) 0.03
4-OH-Phenanthrene 0.16 (−0:10, 0.42) 0.06 0.16 (−0:10, 0.42) 0.06 0.16 (−0:10, 0.42) 0.08
9-OH-Phenanthrene 0.52 (0.16, 0.87) 0.001 0.55 (0.18, 0.92) 0.001 0.54 (0.17, 0.91) 0.004
1-OH-Pyrene 0.60 (0.27, 0.94) 0.001 0.62 (0.27, 0.97) 0.001 0.53 (0.18, 0.88) 0.004
ROH-PAHs 0.94 (0.34, 1.53) 0.002a 0.98 (0.38, 1.58) 0.002a 1.00 (0.40, 1.61) 0.002a

Association with aging rate
1-OH-Naphthalene 0.60 (−0:24, 1.44) 0.19 0.70 (−0:16, 1.56) 0.15 0.61 (−0:26, 1.48) 0.23
2-OH-Naphthalene 0.37 (−0:53, 1.28) 0.22 0.38 (−0:54, 1.29) 0.22 0.32 (−0:61, 1.25) 0.25
2-OH-Fluorene 0.87 (0.12, 1.62) 0.08 0.90 (0.14, 1.67) 0.06 0.93 (0.16, 1.70) 0.06
9-OH-Fluorene 0.37 (−0:18, 0.93) 0.22 0.37 (−0:19, 0.93) 0.22 0.40 (−0:16, 0.97) 0.23
1-OH-Phenanthrene −0:12 (−0:96, 0.71) 0.97 −0:09 (−0:94, 0.76) 0.91 0.03 (−0:84, 0.89) 0.71
2-OH-Phenanthrene 0.75 (−0:02, 1.53) 0.08 0.83 (0.04, 1.62) 0.06 0.90 (0.09, 1.70) 0.06
3-OH-Phenanthrene 0.84 (0.04, 1.64) 0.08 0.92 (0.10, 1.75) 0.06 0.98 (0.14, 1.82) 0.06
4-OH-Phenanthrene 0.29 (−0:30, 0.87) 0.19 0.31 (−0:29, 0.90) 0.17 0.27 (−0:33, 0.87) 0.23
9-OH-Phenanthrene 1.07 (0.27, 1.87) 0.01 1.17 (0.35, 1.99) 0.009 1.15 (0.31, 1.99) 0.02
1-OH-Pyrene 1.22 (0.45, 1.98) 0.01 1.23 (0.45, 2.01) 0.009 1.17 (0.36, 1.98) 0.02
ROH-PAHs 1.78 (0.48, 3.08) 0.01a 1.89 (0.57, 3.21) 0.008a 1.92 (0.57, 3.28) 0.008a

Note: Urinary OH-PAH metabolites were natural-log transformed before analysis. Association analyses were conducted separately in WHZH, SY, and COW, and combined using a
meta-analysis. CI, confidence interval. Model 1: adjusted for age, gender, smoking status, cigarette pack-years, drinking status, BMI, geographic regions (for individuals from the
WHZH-cohort), and array operating date. Model 2: further adjusted for cellular proportions (neutrophils, lymphocytes and intermediated cells). Model 3: further adjusted for marriage
status, education, employment status, frequency of vegetables and fruits intake, and physical activity.
aDifferent from each OH-PAH metabolite for which we presented the FDR values, the association significance for ROH-PAHs were presented as un-multiple corrected P values.

Environmental Health Perspectives 067005-7 126(6) June 2018



disability due to previous work injuries (but without other dis-
eases) had a higher Dage (eight cases in WHZH, P=0:03) (Table
S3 and Figure S8) in the maximally adjusted model. We did not
find other risk factors or traits associated with methylation aging
(Table S3 and Figure S8).

Discussion
Not everyone’s biological “clock” ticks in the same way.
Environmental factors were believed to be contributors of human
aging, but their influences and underlying mechanisms are largely
unclear. Here, adopting a methylation aging marker established
especially for Chinese populations, we found that exposure to PAHs
was associated with accelerated methylation aging independently of
known risk factors. To our knowledge, our study is the first to build
amethylation age predictor specifically for Chinese populations and
to assess the link between PAH exposure andmethylation aging.

Findings from the current study were consistent with previous
reports that coke-oven workers occupationally exposed to PAHs had
a shorter telomere length in comparison with the less-exposed
employees (Pavanello et al. 2010), and that long-term skin exposure
to PM-bound PAHs could lead to higher skin aging scores (Vierkötter
et al. 2010). Moreover, our study extended beyond the previous evi-
dence. First, we used the objectively measured OH-PAHmetabolites
to quantify the total exposure to PAHs from a variety of sources
(including diet, cooking, smoking, heating, traffic, refuse combustion,
and occupational exposures). The use of OH-PAH metabolites not
only improved the measurement accuracy of the exposure, but also
enabled us to separate the effect of different PAH species. For
instance, similar to previous studies (Gao et al. 2016; Horvath et al.

2014), we did not observe significant association of tobacco smoking
with methylation aging; this observation might be partially because
tobacco smoking greatly contributes to the exposure to naphthalene
but not to phenanthrene and pyrene (Zhu et al. 2016). Second, in com-
parion with the previous cellular aging indicators, methylation age
provided additional information – it has a similar scale with chrono-
logical age and can be linked to the epigenetic behavior of certain
age-relevant genes. The value of DNA methylation age has been
underscored by recent studies examining its associations with BMI
(Horvath et al. 2014), cancers (Hannum et al. 2013; Horvath 2013),
Down syndrome (Horvath et al. 2015), and physical and cognitive fit-
ness in elderly populations (Marioni et al. 2015b). Notably, one study
found that a 5-y increase in Dage was associated with a 21% higher
mortality risk in later life (Marioni et al. 2015a), highlighting the
promising value of methylation age in studies of longevity. Our
results, coupled with previous evidence, suggested that exposure to
PAHsmay be a contributor to accelerated aging.

Prior studies suggested that methylation age measured the cu-
mulative work of the epigenetic maintenance system, in which a
greater power was needed to maintain the epigenetic stability dur-
ing stressful times, leading to a high tick rate of the biological clock
(Horvath 2013). Exposure to PAHs could stimulate a chain of in-
ternal responses including xenobiotics metabolism (Shimada and
Fujii-Kuriyama 2004), oxidative stress and DNA damages (Kuang
et al. 2013), leading to adverse health effects (Kim et al. 2013), can-
cers (Boffetta et al. 1997; Bosetti et al. 2007), cardiovascular dis-
eases (Burstyn et al. 2005), or neurological diseases (Ionescu et al.
2011). Both PAH exposure and its related damages (e.g., oxidative
stress) have been associated with DNA methylation alterations
(Franco et al. 2008; Herbstman et al. 2012). Therefore, PAH

Figure 2. Associations of urinary OH-PAH metabolites with methylation aging indicators. Results of all 10 urinary OH-PAH metabolites and ROH-PAH were
presented. The left y-axis and the effect lines show the associations of urinary OH-PAH metabolites with Dage (A) and aging rate (%) (B). Note: ◊, beta in the
SY panel; □, the WHZH panel; D, the COW panel; l, the meta-analysis of the three panels. The right y-axis and gray bars depict mean urinary OH-PAH
metabolites levels in the nature-log scale. Note: WHZH, study subjects selected from the WHZH-cohort; SY, participants recruited from Shiyan, China; COW,
study subjects selected from the cohort of coke-oven workers.
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exposure may disturb the internal environment, which requires a
greater power to reinstate the epigenetic stability, and thus
appeared as associationwith acceleratedmethylation aging.

Notably, CpGs located on FHL2 and ELOVL2 were associ-
ated with both aging indicators and exposure to PAH and were
correlated with gene expressions in the present study. These
CpGs have been previously used as age predictors (Hannum et al.
2013). Intriguingly, FHL2 is a coregulator for AHR (Kollara and
Brown 2010), which encodes a nuclear receptor that regulates the
xenobiotic-metabolism enzymes for PAHs (Billiard et al. 2002)
and the multi-functional pathway of ERK2 signaling (Purcell
et al. 2004); it could affect the self-renewal, quiescence, and sur-
vival of hematopoietic cells (Hou et al. 2015). Methylation of
FHL2 might play a role in the association of PAH with aging
through its function in PAH metabolism, cell signaling, and cell
survival. ELOVL2 encodes an polyunsaturated fatty acids elon-
gase essential in lipid homeostasis regulation (Pauter et al. 2014).
Interestingly, PAH exposure has been related to lipid oxidation
damages and disturbed lipid homeostasis (Kuang et al. 2013),
and lipid oxidation is a culprit of aging (Kregel and Zhang 2007).
Therefore, methylation of ELOVL2 might participate in the PAH-
aging association via the regulation of lipid homeostasis. Our
data suggest that targeted epigenetic alteration may play a part in
the association between PAH exposure and aging. The mecha-
nisms underlying the association of PAH exposure with acceler-
ated aging are still speculative and warrant further investigations.

It is worthwhile to note that the use of an accurate age predictor is
critical for association studies examining methylation age accelera-
tions. Previous studies have established several age predictors using
data from non-Asian populations (Hannum et al. 2013; Horvath
2013), but no age predictor has been developed forAsian populations.
Despite the nice performance in Caucasians, the widely usedHorvath
predictor exhibited larger errors (R∼ 0:83, RMSE∼ 8–10) and sys-
tematic shifts when applied to Chinese populations. In contrast, our
age predictor provided a more accurate prediction in Chinese popula-
tions and a similar accuracy in a Caucasian population (R∼ 0:95,
RMSE∼ 4). Of note,Dage, instead of methylation age, was the most
frequently used indicators in association studies and ismore clinically
relevant. Although the application of the Horvath predictor to our
study populations might initially seem acceptable (e.g., in the testing
set SY, theR of theHorvath agewith chronological agewas 0.83, and
with methylation age from our predictor, 0.85), the correlation
betweenDage from the Horvath predictor and our predictor was only
0.452 due to the variation in chronological age (Figure S9 A and B),
indicating a substantial reduction in accuracy. Our simulations also
confirmed that the inaccuracy in methylation age can cause a rapid
reduction in the accuracy of Dage (Figure S9 C). When applying the
Horvath predictor to assess the association of PAH exposure with age
acceleration,we observed a generally consistent association direction,
but weaker effect coefficients and statistical power when comparing
to those from our predictor (Figure S9 D), probably due to bias and
loss of power from less accuracy. Although these data do not support
a statistically significant validation, they do not rule out the possibility
of replication. Indeed, for ROH-PAHs, 9-OH-phenanthrene, and 1-
OH-pyrene, which we found significantly associated with Dage,
when correcting the association estimates from the Horvath Dage by
regression calibration (Hardin et al. 2003) (i.e., dividing by R2

between the two Dage), the effect estimates became similar to what
we observed using our age predictor (Figure S9 D). However, the
regression recalibration does not provide higher precision of the esti-
mate, therefore P values remain unchanged. The similar effect esti-
mate after regression calibration suggests a potential replication if the
predictor achieved sufficient prediction accuracy. We acknowledge
that our association findings warrant further validation and general-
ization. An accurate methylation age prediction is essential to ensure

an unbiased and more powerful association analysis of age accelera-
tions; therefore, futuremethylation aging studies should consider pre-
diction accuracy in the data interpretation.

Ethnic difference might be a factor limiting the accuracy of
methylation age predictors and the generalization of the association
results across populations/studies. Previous studies suggest that
individuals of different ethnicities may exhibit different methylation
profiles, rates of aging, and association effects (Diez Roux et al.
2009; Galanter et al. 2017; Horvath et al. 2016). Such differences
could be due to intrinsic/geneticmechanisms, differences in habitual
diets and environmental exposures, as well as differences in epige-
netic/biological responses to lifetime exposures, hence the need for
amethylation age predictor that is suitable and accurate for the study
population. However, this aspect does not implicate the need for a
different aging predictor in each study population, but to highlight
the need for more systematic study of DNA methylation aging
across populations and a more refined methylation age predictor
that is accurate and suitable in multiethnic populations (including
Chinese). Currently, our methylation age predictor could be particu-
larly useful for future methylation aging studies in Chinese popula-
tions and may be suitable for studies comparing Chinese with
Caucasian populations. Of note, our age predictor was established
based on methylation of blood leukocytes. Additional data are
needed to develop amultitissue age predictor thatfits Chinese popu-
lations. Another factor that limited the accuracy of the predictor is
the range of age in the training set. However, this factor is less likely
to be the reason why the Horvath predictor is less accurate in our
population as the Horvath predictor was trained in populations rang-
ing in age from0 to100 y old.

DNAmethylation of blood leukocytes is appropriate for the cur-
rent study for two reasons. First, whole blood is themost widely used
and easy-to-access tissue in epidemiological studies. Although the
Horvath age predictor can be applied to multiple tissues, the robust-
ness and clinical relevance ofmethylation ageweremostly examined
using whole blood (Chen et al. 2016; Gao et al. 2016; Marioni et al.
2015a, 2015b). Second, because blood is an important carrier of in-
ternal PAHs, circulating leukocytes have constant and direct contact
with the internal exposures, making them a direct target tissue of
PAH exposure. Although our primary analyses were conducted in
whole blood, our major findings remained consistent after adjusting
for cellular compositions and were replicated using cell subtype-
specificmethylation data, suggesting that thesefindingswere not sig-
nificantly confounded by the mixed cellular nature of whole blood.
Future studies using sorted blood cells or other purified target tissues
might offer further insights.

The strengths of the current study include the establishment of
an accurate methylation age predictor specific for Chinese popula-
tions but also suitable for Caucasian populations, the use of the
objectively measured OH-PAH metabolites, replication in several
populations, adjustment of many potential confounders, and the
replication of whole blood results in purified leukocytes subsets.
Several limitations of our study warrant discussion. First, because
our association analyses were conducted in several Chinese popu-
lations and the methylation aging was measured only in whole
blood, our association results may not be generalized to other pop-
ulations or methylation aging of other tissues. Although our meth-
ylation age predictor performedwell in a Caucasian population, we
were unable to test the association of PAH exposure with methyla-
tion aging due to lack of PAH data in the Caucasian population.
Second, the present study used a cross-sectional design, with both
PAH exposure andmethylation agingmeasured using samples col-
lected at the same time; therefore, the temporal order between
PAH exposure, methylation alteration, and aging acceleration can-
not be inferred. However, it should be noted that, as a toxic xenobi-
otic that human bodies do not synthesize and utilize, PAHs are
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more likely to be driven by unintentional, external exposures rather
than DNA methylation levels. Nevertheless, our study provided
novel insights into the association of exposure to pollutants with
human aging. Future studies of other populations, on other tissues,
and using longitudinal design and repeated measurements, are
needed to expand upon our findings, providing more evidence for
pollutant control and prevention of age acceleration.

Conclusion
In summary, our study reported that exposure to PAHs was asso-
ciated with methylation age acceleration, underscoring the nega-
tive impact of PAH exposure on aging and extending the study of
the methylation clock into the area of environmental health. Our
study also established a methylation age predictor specific for
Chinese populations but also suitable for Caucasian populations.
Future studies are warranted to investigate the health and clinical
significance of such environment-related aging effects.
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